Report No. STAN-CS-86-1110

= ¥e- () 337 m/o
) 1!
-
m TABLOG:
<II A New Approach to Logic Programming

o
< by

% QLICng Yonathan Malachi

R, MAY2 2 1990 Zotar Marma

Richard Waldmggr

9027

Department of Computer Science

Stanford University
Stanford, CA 94305

DISTRIBUTION STATEMENT R
_M

Apprqud tcr purlic telease




SECURITY CLASSIFICATION OF ThIS PAGE (When Dete Enterea)

READ INSTRUCTIONS
REPORT DOCUMENTAT'ON PAGE BEFORE COMPLET[NG FORM
T REPGRT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
s, TITLE (and Subtitle) $. TYPE OF REPORT & PERIOD COVERED
technical

TABLOG: A New Approach to Logic Programming

PEAFORMING ORG. REPORT NUMBER

¢ STAN-Cou86°1710

7. AUTHOR(s) 8. CONTRACT ONM GRANT NUMBER(s)

Yonathan Malachi, Zohar Manna and N00039-84-C-02111
Richard Waldinger

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
. AREA & WORK UNIT NUMBERS
Computer Science Department

Stanford University
Stanford, CA 94305

1. CONTROLLING OFFIiCE NAME AND ADORESS 12. MEPORY DATE
Defense Advanced Research Project Agency March 1985
1400 Wilson Blvd. 13. NUMBER OF PAGES
Arlington, VA 22209 ze

14. MONITORING AGENCY NAME & ADODRESS(i! different trom Controlling Ottice) 1S. SECURITY CLASS. (of this report)

13e. CECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release: distribution unlimited

17. DISTRIBUTION STATEMENT (of the sbatract entered In Block 20, il different from Report)

18. SUPPLEMENTARY NOTES

19 KEY WCRDS (Continue on reveree eide /{ necessary and identily by block aumber)

20 ABSTRACT (Continue on reverse side if necessary and identily by dlock number)

TABLOG (12] is a programming language based on first-order predicate logic with equality
that combines relational and functional programming. In addition to featuring both the
advantages of functional notation and the power of unification as a binding mechanism,
TABLOG also supports a more general subset of standard first-order logic than PROLOG and
most other logic-programming languages.

DD ,Jon'5 1473

SECUMITY CLASSIZICATION OF TwiS PAGE When Dare Entered)




SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
19. XEY WORDS (Continued)

20 ABSTRACT (Conunued)

The Manna-Waldinger deductive-tableau [13,14] proof system is employed as an inter-
preter for TABLOG in the same way that PROLOG uses a resolution proof system. Unification
is used by TABLOG to match a query with a line in the program and to bind arguments.
The basic rules of deduction used for computing are a nonclausal resolution rule that gen-
eralizes classical resolution to arbitrary first-order sentences and an equality rule that is a
generalization of narrowing and paramodulation.

In this article we describe the basic features of TABLOG and its (implemented) sequential
interpreter, and we discuss some of its properties. We give examples to demonstrate when

TABLOG is better than a functional language like LISP and when it is better than a relational
language like PROLOG.

DD. 5147354

EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)




March 1985

TABLOG:
A New Approach to Logic Programming

Yonathan Malach:
Zohar Manna

Computer Science Department
Stanford University

Richard Waldinger

Artificial Intelligence Center
SRI International

Accesior For
NTIS CHA&I

DNIC TAB a
Unannounced 8]
Justification

BY _—

Distribution |

Avidabilty Todes

— T T
Dist Special

A1 |

This article appears in Logic Programming: Relations, Functions, and Equations, D. Degroot and G. Lind-
strom (Editors), Prenuicc-Iall, 1985, This icport supcrsc2s Peport Number STAN-C5-84-1012, “TAB-
LOG: the deductive-tablea programming language.”




TABLOG:
A New Approach to Logic Programming

Yonathan Malach?
Zohar Manna

Computer Science Department
Stanford University

Richard Waldinger

Artificial Tutelligence Center
SRI International

Abstract

TABLOG%Qj ?s a programming language based on first-order predicate logic with equality
that combines relational and functional programming. In addition to featuring both the
advantages of functional notation and the power of unification as a binding mechanism,
TABLOG also supports a more general subset of standard first-order logic than PROLOG and

most other logic-programming languages.
The Manna-Waldinger deductive-tableaur{38;4] proof system is employed as an inter-

preter for TABLOG in the same way that PROLOG uses a resolution proof system. Unification
is used by TABLOG to match a query with a line in the program and to bind arguments.
The basic rules of deduction used for computing are a nonclausal resolution rule that gen-
eralizes classical resolution to arbitrary first-order sentences and an equality rule that is a
generalization of narrowing and paramodulation.

In this article we describe the basic features of TABLOG and its (implemented) sequential

interpreter, and we discuss some of its properties. We give examples to demonstrate when
TABLOG is better than a functional language like LISP and when it is better than a relational
language like PROLOG. 7 . o (

1. Introduction

Logic programming [8] attempts to improve programmer productivity by using predicate
logic, a human-oriented language, as a programming language. PROLOG, the most widely

This article appears in Logic Programming: Relations. Functions, and Equations. . Dcgroot and G. Liud-
strom (Edilws), Prentice-Hall, 1985. This report supersedes Report Number STAN-CS-84-1012, “TAB-

LOG: the deductive-tablea programming language.”




known logic-programming language is based on a resolution proof system and has a re-
stricted syntax. In TABLOG we take the view (shared by other works described in this
volume) that logic programming is not to be regarded as synonymous with PROLOG.

A TABLOG program is a list of assertions in (quantifier-free) first-order logic with
equality that allows one to mix freely functional and relational styles of programming. The
use of this richer and more flexible syntax overcomes some of the shortcomings of PROLOG’s
syntax and makes programming in TABLOG a more intuitive process. For instance, many
examples introduced in [15] as mathematical definitions of functions and predicates can be
directly executed zs TABLOG programs.

The procedural (proof theory) semantics of TABLOG is based on the deductive-tableau
proof system [13,14]. This powerful proof system, which is described in Section 6, can
be applied to arbitrary quantifier-free first-order sentences and therefore does not require
the conversion of logic statements into a restricted special form (such as Horn clauses).
The execution of a program corresponds to the proof of a goal, which produces the desired
output(s) as a side effect. When the proof system is used as an interpreter for programs
in the TABLOG language, the theorem prover is restrained. Since a particular algorithm is
specified by the programmer and since the proof taking place is always a proof of a special
case of a theorem—the case for the given input-—the program interpreter does not need
the full set of deduction rules available in the original deductive-tableau proof system. The
theorem prover can thus be more directed, efficient, and predictable than a theorem prover
used for program synthesis or for any other general-purpose deduction. When the theorem
prover is restricted in order to get these properties, we unfortunately lose the completeness
that the general framework enjoys; this fact is briefly treated in the discussion section at
the end of the article.

We will first define the syntax of TABLOG and give its flavor using a few simple ex-
amples. Before going into more details of TABL.OG we will contrast the language with
PROLOG and LISP. Later, after giving the proof-theory background in Section 6, we will
describe the semantics and execution of TABLOG programs. We will close the article with
a brief comparison to other works and a general discussion of our approach. More detailed
exposition of TABLOG and its properties can be found in [11].

2. TABLOG Syntax

Syntactic Objects
TABLOG uses the language of the quantifier-free first-order predicate logic with equality.
The basic building blocks are:

o truth values: true, false.

e connectives: A, V, -, =, — (implies), — (if), if-then-else.

e variables such as u, v, 1, yYs2s.

e constants such as a, b, [], 5.

e predicates snuch as =, prime, €, 2.

e functions such as gecd, append, +.




We assume the standard definition in logic of terms and formulas (atomic and com-
pound); an ezpression is cither a term or a formula. We do, however, extend these defini-
tions by using the if-then-else construct, both as a connective for formulas, e.g.,

if u = [] then empty(u) else sorted(u)
and as an operator generating terms, e.g.,

ged!{zr y) =if 2 > y then ged(z—y, y)
else ged(z, y—=z).

In the rest of this article we use the term logic to refer to the quantifier-free first-order
predicate logic extended as above, unless explicitly stated otherwise.

Programs
A program is a list of assertions (formulas in the language), specifying an algorithm.
Variables are implicitly universally quantified.

Here is a very simple program, for appending two lists:

append([},v) = v.
append(zou,v) = zoappend(u,v).

The o symbol denotes the list insertion operator (cons in LISP), [] denotes the empty
list (nil in LISP), and append is a function symbol whose semantics is defined by this
program.

The inclusion in the syntax of the if-then-else construct together with « (reverse
implication) enables the programmer to write LISP-style as well as PROLOG-style programs.

A call to a program is a goal (or query) to be proved. Like the assertions, goals are
formulas in logic, but variables are implicitly quantified existentially. The bindings of these
variables are recorded throughout the proof and become the outputs of the program upon
termination.

For example, a call to the append program above might be
z = append([1,2,3], [3,2]).
The result of the execution of this program call will be binding z to the output
[1,2,3,3,2].

The list construct e.g., [1,2, 3], is used for convenience in expressing input and output,
and is actually an abbreviation for 10(20(30(])).

3




3. Examples

The following examples demonstrate a style of programming in TABLOG. The correctness
of these programs does not depend on the order of assertions in the program. It is possible,
howevei, to write programs that do take advantage of the known order of the interpreter’s
goal evaluation, as will be explained later.

In principle, most of the examples described in the other articles in this volume could
be executed in TABLOG when written in the appropriate syntax. In particular any PROLOG
program that does not use cut and does not depend on negation as failure can be trivially
converted into an equivalent program directly executable by a TABLOG interpreter.

In the examples, we use z and y (possibly with subscripts) for variables intended to be
assigned atoms (integers in most of the examples); u and v (possibly with subscripts) are
variables used for lists.

Although we have not as yet described the semantics of TABLOG programs, these ex-
amples can be intuitively understood based on the standard meaning of predicate logic.

Deleting a List Element
The following program deletes all (top-level) occurrences of an element z from a list:
delete(z,[]) = [].
delete(x, you) = (if ¢ =y then delete(z, u)
else yodelete(z,u)).

This program demonstrates the use of equality, if-then-else, and recursive calls. If one does
not like the explicit conditional if-then-else, the last equality assertion can be replaced by
the two assertions:

delete(z, zou) = delete(z, u).
z#y — delete(z, you) = yodelete(z,u).

To remove all occurrences of a from the list {a, b, a, ¢], the goal
z = delete(a, [a,b,a,c])

is given to the interpreter.

Quicksort

Here is a TABLOG program that uses the quicksort algorithm to sort a list of numbers.
It combines a PROLOG-style relational subprogram for partitioning with a LisSP-style func-
tional subprogram for sorting.

- gsort([]) = [}.

. gsort(zou) = append(gsort(u;), zogsort(u;))
— partition(z,u,uy,uz).

N e

w

. partition(z, {],[],[]).

. partition(z,you,you;,uz)
— y <z A partition(z,u,u;,uz).

-3

o

. partition(z,you,u;,yous)
— z <y A partition(z,u,u;,uz).

4




The assertions in lines 1 and 2 form the sorting subprogram. Line 1 asserts that the
empty list is already sorted. Line 2 specifies that, to sort a list zou, with head = and tail
u, one should appeund the sorted version of two sublists of u, u; and u;, and insert the
element z between them; the subprogram partition gec.ucrates these two sublists, u; and
u2, by collecting the elements of u less than or equal to  and greater than z, respectively.

The assertions in lines 3 to 5 specify how to partition a list according to a partitioning
element z. Line 3 deals with the partitioning of the empty list, while lines 4 and 5 treat
the case in which the list is of the form yowu. Line 4 is for the case in which y, the head
of the list, is less than or equal to z; therefore, y should be inserted into the list u; of
elements not greater than z. Linc 5 is for the opposite case.

The append function for appending two lists was defined earlier.



4. Comparison with PROLOG

Functions and Equality

While PROLOG programs must be defined as relations, TABLOG programs can be either
relations or functions. The availability of functions and equality makes it possible to write
programs more naturally. The functional programming style frees the programmer from
needing to introduce many auxiliary variables.

We can compare the PROLOG and TABLOG programs for quicksort. In TABLOG, the pro-
gram uses the unary function gsort to produce a value. whereas a corresponding PROLOG
program is defined as a binary relation qsortp, in which the second argument is needed
to hold the output.

The second assertion in the TABLOG program is

gsort(rou) = append(gsort(u, ),z ogsort(u,))
— partition(z, u, uy, uz).

The corresponding clause in the PROLOG program would be something like

gsortp(zrou,z) « partition(z,u,u;,u2) A
gsortp(uy,z;) A
gsortp(uz, z2) A
appendp(z;,z029,2).

The additional variables z; and z; are required to store the results of sorting u; and u,.
This demonstrates the advantage of having functions and equality in the language. Note
that, although function symbols exist in PROLOG, they are used only for constructing data
structures (like TABLOG’s primitive functions) and are not reduced.

Since TABLOG includes all the features of (pure) PROLOG, logic-programming techniques
like the difference list notation or multi-mode (backward) use of relational programs are
immediately available in TABLOG.

Recently there have been attempts to add equality to PROLOG. Some of these proposals
are described in section 8 on related research, while others are described in other articles
in this volume.

Negation and Equivalence

In PROLOG, negation is not available directly; it is simulated by finite failure. To prove
not(P), PROLOG attempts to prove P; not(P) succeeds if and only if the proof of P fails. In
TABLOG, negation is treated like any other connective of logic. Therefore, we can directly
solve queries such as ~member(1,(2,3]).

The TABLOG union program uses both equivalence and negation:

union([],v) = v.

union(zou,v) = if member(z,v)
then union(u,v)
else (z ounion(u,v)).

6




—~member(z,[]).

member(z,you) = (r =y)V member(z,u).
Here is a possible PROLOG program of the same algorithm:

unionp(zrou,v.z) « memberp(z,v) A unionp(u,v, z).
unionp(zou,v,z0z) « unionp(u,v, z).

unionp({],v,v).

memberp(z,rou).

memberp(zr,you) — memberp(z,u).

Changing the order of the first two clauses in tl.e PROLOG program will result in an incorrect
output; the second clause is correct only for the case in which z is not a member of v.
The TABLOG assertions can be freely rearranged; this suggests that all o them can be
matched against the current goal in parallel, if desired. If in the PROLOG example we add
the condition not(memberp(z,v) as the first conjunct in the body of the second clause,
the program will become less order-sensitive but then in many cases memberp(z,v) will
be evaluated twice, once for the first clause and once for the second.

The Alpine Club Puzzle

The next example shows that some problems are very hard to encode (and solve) when we
restrict ourselves to the language of Horn clauses. In addition to negation and equivalence
this example also utilizes disjunction.

The following puzzle was the subject of discussion by a few contributors to the PROLOG
(electronic) mailing list.

Tony, Mike and John belong to the Alpine Club. Every member of the Alpine
Club is either a skier or a mountain climber or both. No mountain climber likes
rain, and all skiers like snow. Mike dislikes whatever Tony likes and likes whatever
Tony dislikes. Tony likes rain and snow.

Is there a member of the Alpine Club who is a mountain climber but not a skier?

One of the solutions in PROLOG was offered by R. O’Keefe:

alpinist(Tony).

alpinist(Mike).

alpinist(John).

likes(Tony, rain, yes).

likes(Touny, snow, yes).

likes(Mike, z, yes) «— likes(Tony, =, no).
likes(Mike, z,no) « likes(Tony, z, yes).

likes(z,rain, no) « climber(z).




nonskier(z) « likes(z.sno .. nn).
climber(z) — alpinist(z) A nonskier(z).

To solve the puzzle in this form the query
alpinist(z) A climber(z) A nonskier(z).

should be given to the PROLOG system.

To make sure that the solution is consistent with the original statement of the puzzle
we also have to independently show the unprovability of the query

likes(z,y,yes) A likes(z,y,no).
In principle we should also assert in the program
likes(z,y,yes) V likes(z,y,no).

However, since the predicate likes does not appear in the program or the goal with an
uninstantiated third argument, this assertion can be omitted.

Other solutions in PROLOG proposed in the discussion were even less satisfactory as
they did not encode the puzzle accurately.

The syntax of TABLOG makes solving this puzzle much more straightforward:

[

alpinist(John) A alpinist(Tony) A alpinist(Mike).
skier(z) V climber(z) « alpinist(z).
-climber(z) « likes z,rain).

—skier(z) « -likes(z,snow).

likes(Tony, rain) A likes(Tony, suow).

likes(Mike, y) = -likes(Tony, y).

N S

The puzzle is solved by proving the goal
alpinist(z) A climber(z) A —skier(z).

The solution produced by the interpreter is z = Mike.

Note that in line 4 of the program, the procedural interpretation of TABLOG forces us
to use the contrapositive

-skier(z) « -likes(z,snow)
rather than the direct form
skier(z) — likes(z, snow)

which is regarded as a definition for likes. This is the only transformation applied to the
oririnal specification.

o




Occur Check

The unification procedure customarily built into PROLOG is not really unification (e.g.,
as defined in [22]); it does not fail in matching an expression against one of its proper
subexpressions since it lacks an occur check. When a theorem prover is used as a program
interpreter, the omission of the occur check makes it possible to generate cyclic expressions
that may not correspond to any concrete objects (and might take infinite amount of time
to print).

For example, look at the following program specifying the parent relation:

parent(father(z), z).

If this program is called with the goal
parent(z,z)

a PROLOG interpreter will succeed but with the binding
{z « father(z)}

le.,
{z « father(father(father(---)---))}

which is cyclic and cannot be printed unless a special notation for such cases is introduced.
This answer is also wrong because logically the program does not imply the truth of the
goal. The fact that everyone’s father is his or her parent does not imply that someone is
his or her own parent.

The unification used by the TABLOG interpreter does include an occur check, so that
only theorems can be proved. This choice is orthogonal to the other design decisions in
the implementation of TABLOG; if future implementors think that the cost of this test is
too high they will be able to use unification without the occur check and pay by losing
soundness for some cases. TABLOG allows using nested function calls, and hence programs
tend to have fewer repetition of variables than the corresponding PROLOG programs; since
the occur check is necessary only if there is at least one variable that occurs more than
once in one of the unified expressions (assuming renaming of variables to preserve their
locality) this observation can lead to a more efficient unification with restricted application
of the occur check.

In the QUTE language [23], the omission of the occur check is essential to the way re-
cursive definitions are introduced. Since QUTE is not based on resolution theorem proving,
this does not compromise its soundness.

5. Comparison with LISP

LISP programs are functions, each returning one value; the arguments of a function must
be bound before the function is called. In TABLOG, on the other hand, programs can be

9




either relations or functions, and the arguments need not be bound; these arguments will
later be bound by unification.

We can illustrate this with the quicksort program again, concentrating on the partition
subprogram. In TABLOG, we have seen how to achieve the partition by a predicate with
four arguments, two for input and two for output:

partition(z, {],[],[])
partition(z,you,you;,us)
— y <z A partition(z,u,u;,us).

partition(z,you,u;,yous)
— z <y A partition(z,u,u;,us).

The definition of the program partition is much shorter and cleaner than the corre-
sponding LISP program:

highpart(z,u) <«
if null(z) then nil
else if > car(u) then highpart(z, cdr(u))
else cons(car(u), highpart(z, cdr(u)))

lowpart(z,u) <«
if null(«) then nil
else if z > car(u)
then cons(car(u), lowpart(z,cdr(u)))
else lowpart(z,cdr(u)).

We can generate the two sublists in LISP simultaneously, but this will require even more
pairing and decomposition. Modern LISP systems include provisions for functions with
more than one output. Although the syntax for using this feature is somewhat complex,
we can get a nicer solution to this problem using multi-valued functions.

Note that unification also gives us “free” decomposition of the list argument into its
head and tail; in the LISP program, even if multi-valued functions are used, this decompo-
sition requires explicit calls to the functions car and cdr. This feature is available as a
syntactic sugar in some modern functional languages like SASL [26] and ML [17].

Unification is even more powerful than is indicated by this example. For example, we
can generate partially computed results by using a logical variable before it is evaluated,
with the concrete value later communicated by the unification. This feature is nicely
demonstrated by Reddy’s address translation example [19] but it is not limited to relational
programs and can be used in a functional language with unification. '

6. The Deductive-Tableau Proof System

The deductive-tableau proof system [13,14] is a general framework for theorem proving
that was originally utilized for program synthesis. LISP and PROLOG implementations of it

10




as a part of interactive systems are described in [10], [1], and [27]. Stickel [24] combines the
nonclausal resolution rule of this proof system with connection graphs to yield an automatic
theorem prover that has been incorporated into a natural-language understanding system.

In this section, we describe the version of the proof system that is used as the TABLOG
interpreter; only the deduction rules actually employed by this interpreter are detailed. For
a better description of the theory of the general proof system please refer to the original
articles. For even more details await [16].

A deductive tableau consists of a set of rows, each containing either an assertion or a
goal. The assertions and goals (both of which we refer to by the generic name entries) are
first-order logic formulas. The tableau is valid if and only if under every interpretation
some instance of at least one of the assertions is false or some instance of at least one of
the goals is true.

To prove a theorem we enter it as the initial goal; if we want to prove that a sentence
is implied by some assumptions we enter the assumptions as assertions and the implied
sentence as the goal. In most cases the assertions will specify properties of the data domain.
In contrast to standard resolution proof system we do not have to manipulate the negation
of the given theorem (using a refutation procedure) and we do not have to convert any
sentence to clausal form.

A proof in this system is constructed by adding new goals to the tableau, using deduc-
tion rules, in such a way that the final tableau is semantically equivalent to the original
one. In the version of the tableau used for the TABLOG interpreter, we follow an affirmation
procedure and the proof is complete when we have generated the goal true. In general a
proof within the tableau can also succeed by refutation (i.e., producing the assertion false)
rather than by affirmation. Standard resolution and Stickel’s implementation of nonclausal
resolution use a refutation procedure.

Logically there is duality between assertions and goals: an assertion can be replaced
by a goal containing its negation and vice versa. By using both assertions and goals we
can preserve the intuitive meaning of the sentences.

Deduction Rules

As mentioned bLefore, not all the deduction rules supported by the deductive-tableau proof
system are used in the interpreter for TABLOG. The soundness of the inference rules can
be justified by case analysis, showing that introducing a new goal in each case will not
make the tableau valid unless it was valid before the addition. The basic rules used for
the program execution task are the following:

e Nonclausal Resolution: This generalized resolution rule allows removal of a subfor-
mula P from a goal G[P] by means of an appropriate assertion A[P]. (Note that
the use of square brackets here is in the metalanguage and is not related to the
list notation). Resolving the goal

g(P]

with the assertion

AP,

11




provided that P and P are unifiable, i.e., P8 = P9 for some (most-general)
unifier §, we get the new goal

-A'({false] A G'[true],

where A'[false] is A8 after all occurrences of P8 have been replaced by false, and
similarly for G'(true].

This form of the rule is called goal-assertion resolution; another form used in
TABLOG is the assertion-goal resolution that changes the role of the subformu-

las replaced by false and true. For example, for the assertion and goal above,
assertion-goal resolution will generate the new goal

~A'ltrue] A G'[false].

The choice of the unified subformulas is governed by the polarity strategy. A
subformula has positive polarity if it occurs within an even number of (explicit or
implicit) negations, and has negative polarity if it occurs within an odd number
of negations. Assertions are positive and because of duality every goal has an
implicit negation applied to it. A subformula can occur both positively and
negatively in a formula. According to the polarity strategy, the instance Pé of
the subformula P will be replaced by false only if P occurs with positive polarity;
dually, (the instance P8 of) the subformula P will be replaced by true only if P
occurs with negative polarity.

Murray [18] proves that nonclausal resolution system is complete for first order
logic even under the restriction of the polarity strategy. Note that the version
used by TABLOG is not complete because we do not use the versions of the rule
that match two assertions or two goals. The version used here always unifies
a pair of subformulas while the general rule allows unifying sets of subformulas
(and thus takes care of factoring).

o Equality Rule: This rule uses an asserted (possibly embedded in a larger formula)
equality of two terms to replace one of the terms with the other in a goal. If the
asserted equality is conditional, the conditions are added to the resulting goal as
conjuncts.

Thus, suppose the assertion is of the form
Als =],

with the equation s = ¢ occuring in positive polarity, and the goal is
13, |

where s and 3 are unifiable, i.e., 3§ = 36 for some unifier §. Then we get the new
goal

-A'(false] A G'[t'],

12




where A’[false] is A after all occurrences of the equality s§ = t6 have been
replaced by false, and where G'{i’] is G after all occurrences of the term s have
been replaced by t6.

The general version of this rule allows matching against the left-hand side or the
right-hand side of the equality; in TABLOG however we use this rule in directional
way and we always use it to replace the left-hand side by the right-hand side
(after the appropriate unification, of course).

o Eguivalence Rule: This rule replaces one subformula by another asserted to be
equivalent to it. This is completely analogous to the equality rule except that we
1eplace atomic formulas rather than terms, using equivalence rather then equality.

While nonclausal resolution and the equivalence rule can be performed unifying arbi-
trary subformulas, the TABLOG interpreter applies these deduction rules unifying atomic
subformulas only.

Each of the above inference rules is followed by simplification: a formula is replaced
by an equivalent but simpler formula. Both propositional and basic arithmetic simplifica-
tion are performed automatically by the TABLOG interpreter immediately following every
deduction step.

7. Program Semantics

Every line in a program is an assertion in the tableau; a call to the program is a goal
in the same tableau. The logical interpretation of a tableau, containing the assertions of a
TABLOG program and a goal calling it, is the logical sentence associated with that tableau:

the conjunction of the universal closures of the assertions implies the existential closure of
the goal.

The desired goal is reduced to true by means of the assertions and the deduction rules.
The variables are bound when subexpressions of the goal (or derived subgoals) are unified
with subexpressions of the assertions. The order of the reduction is explained in the next
section. The output of the program is the final binding of the variables of the original goal.

The function symbols of TABLOG are grouped according to their intended use: con-
structor function symbols serve to build data structures in the language; for example, o
is a predefined constructor. Basic (or built-in functions have attached procedures hard-
wired into the implementation to define their semantics; basic arithmetic functions like +
and min are predefined built-in functions. Defined functions are those that are defined
by the assertions of a TABLOG program. The constructor and basic functions are called
primitive functions, while the basic and defined functions are called reducible functions.
The difference between the two kinds of reducible functions is the way they are reduced:
basic functions are reduced by the built-in simplifier while defined functions are reduced
by the equality rule. Although there are no constructor predicates we do distinguish be-
tween bastc (primitive) predicates and defined predicates. The primitive operators include
the primitive functions, primitive predicates the logical connectives and the if-then-else
construct (in both usages). A primitive ezpression is an expression that does not contain
defined (i.e., nonprimitive) operators; a ground ezpression is a variable free primitive ex-
pression. For example, the term [(2 + z + 5)] (i.e., (2 + = + 5)0[]) is a primitive (but not

13




ground) expression (with constructor function o, and primitive built-in function +), and
will be automatically simplified to [(z + 7)].

As in PROLOG, variables are local to the assertion or goal in which they appear. Re-
naming of variables is done automatically by the interpreter when there is a collision of
names between the goal and assertion involved in a derivation step.

The variables of the original goal are the output variables. The interpreter records their
bindings throughout the derivation and their final binding is the output of the computation.

8. Program Execution

The tableau system provides deduction rules but does not specify the order in which to
apply them. To use this proof system as a programing language, we must devise a proof
procedure that employs the rules in a predictable and efficient manner.

The proof system is used to execute programs in a way analogous to the inversion
of a matrix by linear operations on its rows, where we simultaneously apply the same
transformations to the matrix to be inverted and to the identity matrix. In the program
execution process, we start with a tableau containing the assertions of the program and a
goal calling this program; we apply the same substitutions (obtained by unification) to the
current subgoal and to the binding of the output variables. A matrix inversion is complete
when we reduce the original matrix to the identity matrix; in TABLOG we are done when
we have reduced the original goal to true. At this point, the result of the computation is
the final binding of the output variables.

Although in the declarative (logical) semantics of the tableau the order of entries is
immaterial, the procedural interpretation of the tableau as a program takes this order into
account; changing the order of two assertions or changing the order of the conjuncts or
disjuncts in an assertion or a goal may lead to different computations and results.

The user must specify an algorithm by employing the predefined order of evaluation of
the tableau; the next subsection describes this evaluation order.

Order of Evaluation

At each step of the execution, one simple ezpression (a nonvariable term or an atomic
formula) of the current goal is reduced. The expression to be reduced is selected by
scanning the goal from left to right. The first (leftmost-outermost) simple expression is
chosen and reduced, if possible. The reduction is done by applying an appropriate inference
rule: the equality rule for a term, and nonclausal resolution or the equivalence rule for an
atomic formula.

If the reduction fails the choice of the simple expression is suspended and a subexpres-
sion of it is chosen instead. If no such subexpression exists, a form of backtracking takes
place as will be described later.

If the atomic formula is an equality and its two sides do not contain any defined func-
tions, the equality is reduced by unifying the two sides and replacing the equality by true;
if this is not the case or if the unification fails, the choice is suspended and the two sides
are searched for the next simple expression.

14




If the operator (function or predicate) of the chosen expression is primitive it gets
special treatment. Operators with built-in semantics (in the form of attached procedures)
are evaluated when they have appropriate arguments; otherwise they are treated like failed
reductions, i.e., the choice is susnended. Since constructors are not reducible, the choice
of a term with a constructor function as the main operator is suspended immediately and
subexpressions are reduced.

Formulas generally occur as the outermost expressions; therefore resolution and equiv-
alence rules are in most cases tried first. Only if they cannot be applied do we reduce the
terms inside the formulas; this is very similar to the way narrowing is applied in other
approaches. Note however that this is not always the case; for example, we can have for-
mulas inside the terms (as the condition of an if-then-else expression) and we also have
the notion of suspension.

The order of evaluation described here is essentially lazy evaluation, as arguments are
not computed unless their values are needed. Given the left-to-right order of evaluation
between (for example) conjuncts in the goal, we can force the evaluation of an argument
by using an auxiliary variable (this is similar to the way [4] removes nested function calls).

Before we demonstrate this with an example, it is important to emphasize again that
the matching of the selected expression against program assertions is done in order of
appearance. This order dependence makes it possible to guide the control of execution of
the program and achieve a more efficient program.

All of the order dependence of programs is part of the sequential model for TABLOG
execution. A parallel model does not require programs to be order-dependent.

An Example: Quicksort

Now we will try to illustrate and clarify the description of the last subsection via an instance
of a call to the quicksort program of section 3.2.

To sort the list [2,1,4, 3] using quicksort, we write the goal
z = gsort([2, 1,4, 3]).

Since the right-hand side of the equality contains the defined function gsort, the unification
of the two sides is delayed and the simple expression chosen for reduction will be the
term gsort([2,1,4,3]), i.e., gsort(20(1,4,3]). This term unifies with the leftmost term
gsort(zou) in the second assertion of the quicksort program,

gsort(zou) = append(gsort(u; ),z oqsort(uz))
— partition(z, u,u;, uz2).

According to the equality rule, it will be replaced by the corresponding instance of the
right-hand side of the equality; this is done only after the unifier

{z — 2, ue[1,4,3]}
is applied to both the goal and the assertion. The occurrence of the equality

gsort(20][1,4,3]) = append(qgsort(u;),2o0qgsort(uz))

15




is replaced by false in the (modified) assertion; the occurrence of the term
gsort(20(1,4,3])

is replaced by the term
append(gsort(u;),20oqgsort(uz))

in the (modified) goal, and a conjunction is formed, obtaining

not(false — partition(2,(1,4,3],u;,uz2)) A
z = append(gsort(u;), 20 qsort(u;)).

This formula can be reduced by the simplifications
(false — P) = not P
and
not(not P) = P
to obtain the new goal

partition(2,[1,4,3],u;,u2) A
z = append(gsort(u,),2o0qsort(u,)).

Continuing with this example, we now have a case in which the expression to be reduced

is an atomic formula, namely,

partition(2,[1, 4, 3], uy, uz).

This atomic formula is unifiable with a subformula in the second assertion of the partition

subprogram (with variables renamed to resolve collisions)

partition(z,you,yous,uy)
— y <z A partition(z,u,u3,us).

Nonclausal resolution is now performed to further reduce the current goal. The unifier

{z 2 y—1, ue[4,3], ug «— lous, uy — uy4}
is applied to both the assertion and the goal; the formula
partition(2, (1,4, 3], 1ous, u4)

16




is replaced by false in the (modified) assertion and by true in the goal. Once again a
conjunction is formed and the new goal generated (after simplification) is

partition(2,[4,3],u3,us) A
z = append(qsort(lous), 20qsort(uy)).

After a sequence of resolutions to compute the partition of the input list we get the
goal

z = append(qgsort([1]), 20 gsort([4, 3]))

which leads to the selection of the whole right-hand side of the equality as the expression
to reduce. None of the two assertions defining append can be used to reduce this term;
therefore the selection is suspended and the term qsort([1]) is chosen instead and gets
reduced successfully.

Eventually we reach the subgoal
z=1[1,2,3,4],

where the right-hand side of the equality contains only primitive functions and constants.
The execution then terminates and the desired cutput is

1,2,3,4].

Note that some functions and predicates (e.g., o in this example) are predefined to be
primitive; an expression in which such a symbol is the main operator is never selected to
be reduced, although its subexpressions may be reduced.

Backtracking

If the selected expression cannot be reduced, the search for other possible reductions is
done by backtracking.

In PROLOG each goal is a conjunction, so all the conjuncts must be proved; this means
that, when facing a dead end, we have to undo the most recent binding and try other
assertions.

In TABLOG the situation is more complex: each goal (and each assertion) is an arbi-
trary formula, so it is possible to satisfy it without satisfying all its atomic subformulas.
Therefore, when the TABLOG interpreter fails to find an assertion that reduces some basic
expression, it tries to reduce the next expression that can allow the proof to proceed. If the
expression that cannot be reduced is “essential” (for example, a conjunct in a conjunctive
goal), no other subexpression will be attempted and backtracking will occur.

During backtracking, the goal from which the current goal was derived becomes the new
current goal, but the next plausible assertion is used. This is similar to the backtracking
used in PROLOG.

17




The Implementation

A prototype interpreter for TABLOG has been implemented in MACLISP. The implemented
system serves as a program editor, debugger, and interpreter. All the examples mentioned
in this paper have been executed on this interpreter.

The user must declare the variables, constants, functions, and predicates used in the
program; some primitive constants, functions, and predicates (such as 0, [}, +, —, >, odd)
are predefined.

Because the interpreter is built on top of a versatile theorem-proving system, the exe-
cution of programs is relatively slow. The simplifier built into the interpreter now handles
complicated cases that might arise in a more general theorem-proving task, but will never
occur in TABLOG. We hope that performance will be improved considerably by tuning
the simplifier and utilizing tricks from PROLOG implementations to make the binding of
variables faster.

9. Related Research

Logic programming has become a fashionable research topic in recent years. Most of the
research relates to PROLOG and its extensions. We mention here some of the work that
has been done independently of TABLOG to extend the capabilities of PROLOG.

While the deductive-tableau theorem prover used for TABLOG execution is based on
a generalized resolution inference rule, [4], [5], and [3] describe a programming language
based on a natural-deduction proof system. They do allow quantifiers and other connectives
in their language. The language is very general and its execution uses forward as well as
backward reasoning. Instead of having the equality rule, all formulas are converted to
a basic form by eliminating all nested functions. We do not know about the status of
implementations for this language. This is the only approach that actually adds all the
connectives to logic programming.

Kornfeld {7] extends PROLOG to include equality; asserting equality between two objects
in his language causes the system to unify these objects when regular unification fails.
This makes it possible to unify objects that differ syntactically. Kornfeld treats only Horn
clauses and does not introduce any substitution rule either for equality or for equivalence.

Tamaki [25] extends PROLOG by introducing a reducibility predicate, denoted by *.
This predicate has semantics similar to the way TABLOG uses equality for rewriting terms.
This work also includes f-symbols and d-symbols that are analogous to TABLOG’s distinction
between defined and primitive functions. The possible nesting of terms is restricted and
programs must be in Horn clause form.

The works of [20], [2], and [9] extend functional programming to have logical variables
and unification. By either adding relations or encoding them using functions these lan-
guages essentially have most of the power of TABLOG. While EQLOG [2] also contains Horn
clauses Reddy’s language [20] is essentially functional and [9] takes an even more cautious
approach: each function symbol can occur exactly once on the left-hand side of a definition.

There are PROLOG systems, such as LOGLISP [22] and QLOG (6], that are implemented
within LISP systems. These systems allow the user to invoke the PROLOG interpreter
from within a LISP program and vice versa. In TABLOG, however, LISP-like features and

18




PROLOG-like features coexist peacefully in the same framework and are processed by the
same deductive engine.

10. Discussion

The TABLOG language is a new approach to logic programming: instead of patching up
PROLOG with new constructs to eliminate its shortcomings, we suggest a more powerful
deductive system.

The combination in TABLOG of unification as a binding mechanism, equality for speci-
fying functions. and first-order logic for specifying predicates creates a rich language that
1s logically clean. As a consequence, programs more directly correspond to our intuition
and are easier to write, read, and modify. We can mix LISP-style and PROLOG-style pro-
gramming and use whichever is more convenient.

By restricting the general purpose deductive-tableau theorem prover and forcing it to
follow a specific search order, we have made it suitable to serve as a program interpreter;
the specific search order makes it both more predictable and more efficient than attempting
to apply the deduction rules in arbitrary order.

When the theorem prover is restricted to achieve predictability and efficiency, we do
lose its completeness. The reasons for losing completeness include: absence of factoring or
its equivalent in the restricted form of the resolution rule; the omission of goal-goal and
assertion-assertion resolution, and the directionality of using equivalence and equality to
define functions and predicates. The absence of completeness does not however affect the
examples that we have tried. Furthermore, whenever the programs are restricted to Horn
clause form we still enjoy all the completeness properties of this sublanguage.

While the theorem prover supports reasoning with quantified formulas [16, 1], the ram-
ifications of including quantifiers in the language are still under investigation. Quantifiers
would certainly enhance the expressive power of TABLOG, but we believe that they are more
suited to a specification language than a programming language. If for example we have
a universally quantified formula in the condition of an if-then-else, in order to evaluate its
truth value we have to check the validity of the matrix of the formula. This can be done
if we have decision procedures for the data domain of the program, which is reasonable
for a general theorem proving system but too expensive for a program interpreter. On the
other hand quantifiers may be introduced as an iteration operator. This can be done if we
restrict every quantifier to be bounded by some predicate (e.g., membership in a set).

It seems very natural to extend TABLOG to parallel computation. The inclusion of real
negation and the conditional if-then-else makes it possible to write programs that do not
depend on the order of assertions.

The extension of TABLOG to support concurrent programs is being pursued. If the
conditions of the assertions are disjoint, several assertions can be matched against the
current subgoal in parallel. In addition, disjunctive goals can be split between processes.
If there are no common variables, conjuncts can be solved in parallel; otherwise some form
of communication is required.

The or-parallelism and and-parallelism suggested for PROLOG are applicable for TABLOG
as well. The or-parallelism of PROLOG corresponds to matching against many assertions;

19




in TABLOG or-parallelism is also possible within every goal, since, for example, goals can
be disjunctive. In TABLOG, other forms of parallelism can be applied to nested function

calls.

We believe that TABLOG offers a significant advance over PROLOG in allowing more
direct expression of the programmer’s intentions. If PROLOG is destined to become the
FORTRAN of the year 2000, we can hope that TABLOG will become at least its PASCAL.

Acknowledgments

Thanks are due to Martin Abadi, Yoram Moses, Oren Patashnik, Jon Traugott, and Joe
Weening for comments on various versions during the evolution of this paper. We are
especially indebted to Bengt Jonsson and Frank Yellin for reading many versions of the
manuscript and providing insightful comments and suggestions.

This research was supported in part by the National Science Foundation under grants
MCS-82-14523, MCS-81-11586, and MCS-81-05565, by the United States Air Force Office
of Scientific Research under Contract AFOSR-81-0014, by the Office of Naval Research
under Contract N00014-84-C-0706, and by Defense Advanced Research Projects Agency
under Contract N0039-82-C-0250.

The first author gratefully acknowledges the support by an IBM predoctoral fellowship
and an HTI fellowship during early stages of this research.

References

1. Bronstein, A. “Full quantification and special relations in a first-order logic theorem
prover,” unpublished report, Computer Science Department, Stanford University, 1983.

2. Goguen, J.A,, and J. Meseguer, “EQLOG: Equality, types, and generic modules for
logic programming,” in Logic Programming: Relations, Functions, and Equations, D. De-
groot and G. Lindstrom (Editors), Prentice-Hall, 1985.

3. Hansson, A., S. Haridi, and S.-A. Téarnlund, “Properties of a logic programming

language,” in Logic Programming, K.L. Clark and .-A. Tarnlund (editors), Academic
Press, 1982.

4. Haridi, S. “Logic programming based on a natural deduction system,” PhD Thesis,
Department of Telecommunication Systems and Computer Science, The Royal Institute
of Technology, Stockholm, Sweden, 1981.

5. Haridi, S., and D. Sahlin, “Evaluation of logic programs based on natural deduc-
tion,” Technical report RITA-CS-8305 B, Department of Telecommunication Systems
and Computer Science, The Royal Institute of Technology, Stockholm, Sweden, 1983.

6. Komorowski, H.J. “QLOG: The Programming Environment for PROLOG in LISP,” in
Logic Programming, K.L. Clark and S.-A. Tarnlund (editors), Academic Press, 1982.

20




7. Kornfeld, W. “Equality for PROLOG,” in Logic Programming: Relations, Functions,
and Equations, D. Degroot and G. Lindstrom (7 ditors), Prentice-Hall, 1985.

8. Kowalski, R. Logic for Problem Solving, North-Holland, 1979.

9

9. Lindstrom, G. “Functional Programming and the logical variable,” in Proceedings
of the Twelfth ACM Symposium on Principles of Programming Languages, New Or-
leans, Louisiana, January 1985.

10. Malachi, Y. “Deductive prograimming.” unpublished report, Department of Com-
puter Science, Stanford University, December 1982.

11. Malachi, Y. “Nonclausal Logic Programming,” PhD Dissertation. Computer Sci-
ence Department, Stanford University, forthcoming.

12. Malachi, Y., Z. Manna and R. Waldinger, “TABLOG—the deductive-tableau pro-
gramming language” in Proceedings of the ACM Symposium on Lisp and Functional
Programming, Austin, Texas, August 1984.

13. Manna, Z., and R. Waldinger, “A deductive approach to program synthesis,” ACM
Transactions on Programming Languages and Systems, Vol. 2, No. 1, pp. 92-121, Jan-
uary 1980.

14. Manna, Z.. and R. Waldinger, “Special relations in automated deduction,” Tech-
nical Report, No. STAN-CS-85-1051, Department of Computer Science, Stanford Uni-
versity, May 1985. Also, Technical Note 355, Artificial Intelligence Center, SRI Interna-
tional. To appear in Journal of the ACM.

15. Manna, Z., and R. Waldinger, The Logical Basis for Computer Programming, Vol-
ume 1: Deductive Reasoning, Addison-Wesley, 1985.

16. Manna, Z., and R. Waldinger, The Logical Basis for Computer Programming, Vol-
ume 2: Deductive Systems, Addison-Wesley, to appear.

17. Milner, R. “A proposal for standard ML,” Proceedings of the ACM Symposium on
Lisp and Functional Programming, Austin, Texas, August 1984.

18. Murray, N.V. “Completely nonclausal theorem proving,” Artificial Intelligence,
Vol. 18, No. 1, pp. 67-85, 1982.

19. Reddy, U. “On the relationship between logic and functional languages,” in Logic
Programming: Relations, Functions, and Equations, D. Degroot and G. Lindstrom (Edi-
tors), Prentire-Hall, 1985.

21




20. Reddy, U. “Narrowing as the operational semantics of functional languages,” in
Proce=dings of the 1985 Symposium on Logic Programming, Boston, Massachusetts, July
15-18, 1985.

21. Robinson, J.A. “A machine-oriented logic based on the resolution principle,” Jour-
nal of the ACM, Vol. 12, No. 1, January 1965, pp. 23—41.

22. Robinson, J.A., and E. E. Sibert, “LOGLISP: An alternative to PROLOG,” in Ma-
chine Intelligence 10, J. E. Hayes, D. Michie, and Y-H Pao (editors), Ellis Horwood Ltd.,
Chichester, 1982.

23. Sato. M., and T. Sakurai, “QUTE: A Functional language based on unification,” in
Logic Programming- Relations, Functions, and Equations, D. Degroot and G. Lindstrom
(Editors), Prentice-Hall, 1985.

24, Stickel, M.E. “A nonclausal connection-graph resolution theorem-proving pro-
gram,” Proceedings of the National Conference on Artificial intelligence, Pittsburgh,
Pennsylvania, August 1982.

25. Tamaki, H. “Semantics of a logic programming language with a reducibility predi-
cate,” Proceedings of the IEEE Logic Programming Conference, Atlantic City, February
1984.

26. Turner, D.A. “SASL language manual,” Computer Laboratory, University of Kent,
Canterbury, England, 1976 (revised August 1979).

27. Yellin, F. “PROLOG based program synthesis.” unpublished report, Computer Sci-
ence Department, Stanford University, 1983.

22




